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Abstract—We present our work in the area of heterogeneous
optical integration, where separately manufactured electronic com-
ponents are assembled on to an active silicon photonics interposer
to form a higher-level component. This process allows for the
integration of components independently designed and optimized
from several different technology and foundry platforms onto
a common interposer. Heterogeneous integration is essential for
manufacturing higher speed and performance components. Higher
levels of integration also allow for closer placement of devices which
minimizes the parasitic power consumed to compensate for the
frequency dependent losses in the interconnect traces.

Index Terms—2.5D integration, heterogeneous integration,
photonic integrated circuits, silicon photonics.

I. INTRODUCTION

PHOTONIC integration falls into two broad categories;
monolithic and heterogeneous. Monolithic integration is

one where the variety of optical [1] or both electrical and optical
[2] components are integrated onto a common substrate, using
a common foundry process. Heterogeneous integration differs
from monolithic in a significant aspect that it integrates compo-
nents from different foundry technology platforms, usually post
fabrication, using physical attach processes [3]. Heterogeneous
integration also refers to cases where different material systems,
are physically bonded to a common substrate and processed
together to form the final component [4]. In this paper, we will
focus on the former.

The term “2.5D” heterogeneous integration refers to how the
discrete chips are integrated on a common substrate. A 2D
architecture is where two or more active devices are placed
side-by side and interconnected via a common substrate. A 3D
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Fig. 1. 2D, 2.5D and 3D integration nomenclature as used in the paper. We
discuss the 2D and 2.5D integration techniques in detail.

architecture is where two or more active devices are stacked and
interconnected without the help of a common substrate, like in
high bandwidth memory (HBM) [5], [6].

In this paper, we discuss a packaging technique where 2D
structures, on a common silicon photonics interposer/substrate,
are interconnected with other silicon devices via a package
substrate. This method is referred to as the 2.5D integration.

There are differing views in the industry on what constitutes
2D, 2.5D and 3D integration [7]. We have decided to follow
the IEEE guidelines given in the Heterogeneous Integration
Roadmap [5]. This is illustrated in Fig. 1, where, in the case of
devices discussed in this paper, the driver amplifier (DRV) for
the transmitter, transimpedance amplifier (TIA) for the receiver
and distributed feedback (DFB) lasers are 2D integrated on
a common silicon photonics substrate. The silicon photonics
substrate also has all the optical components, like the Mach
Zehnder modulator (MZM), power and wavelength splitters,
combiners, and high-speed photodetectors (HSPD).

The 2D optical assembly is then integrated with a digital
signal processor (DSP) and other ASIC’s (application specific
integrated circuit) on a common high speed organic substrate,
to form the final 2.5D assembly. If instead, the 2D assembly is
stacked on the DSP, then it becomes a 3D assembly.

In going from a 2D to 2.5D integration, additional structures
like the TSV’s (Thru-Silicon-Via) may be needed in the silicon
photonics assembly. This is discussed in detail in the paper.
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Fig. 2. Evolution of transceiver modules, with increasing data rates, over the
past two decades. All, except for the CPO (which is meant to be on-board
integrated), are front face pluggable modules.

TABLE I
TRANSCEIVER MODULE TYPES AND CAPABILITIES

The focus of the paper is heterogeneous integration on a
silicon photonics substrate. There are number of commercial
silicon photonics foundries currently in operation [8]. In silicon
photonics, photodetectors are built from Ge grown on the Si
substrate. The optical sources are either heterogeneously at-
tached InP DFB lasers [3] or DFB lasers processed on the silicon
platform, from heterogeneously attached InP epitaxial material
[4], [9]. Although there are multiple approaches to package
integration [6], [10], the method we have described here uses
the silicon photonics device as an interposer, with TSV’s.

II. OPTICAL TRANSCEIVER EVOLUTION

For data center interconnects, front face pluggable modules
have been the mainstay of the optical transceiver market for the
past 20 years. Fig. 2 shows a progression of module form factors
over the years. All of them are front face pluggable except for
Co-Packaged Optics (CPO).

SFP (small form factor pluggable) module, introduced in the
early 2000’s, and still in deployment, was used for 1 Gbit/s and
10 Gbit/s data rates [11]. The pluggable optical transceivers have
progressed over time, in data rate, size and type as shown in
Table I. The data rates shown in Table I do not include forward
error correction (FEC) and other protocol related overhead,
which increases the actual bit rates by 5% to 15%.

TABLE II
PLUGGABLE MODULE EVOLUTION IN SPEED AND POWER

As the data rates increased to 40 Gbit/s, there was a need
for modules with a larger number of input electrical lanes. The
SFP, which only had a single input electrical lane, morphed
into a Quad Small Form Factor Pluggable (QSFP) with 4 input
electrical lanes. QSFP-28 and QSFP-56 are higher bandwidth
electrical variants designed to accommodate the evolution to
100 Gbit/s and 200 Gbit/s data rates [11]. For the commensurate
four lane optical output, the 4 wavelengths (channels) are on a
Coarse Wavelength Division Multiplexing (CWDM) grid in the
O band of the optical fiber [12].

At the transition to 200 Gbit/s, the NRZ modulation format
changed to PAM4, with a factor of 2 difference between the data
and signal rates. Although the data rate was 50 Gbit/s per lane,
the signal rate was 25 Gbaud.

At 400 Gbit/s, there was a need for 8 input electrical lanes,
as there was a generational mismatch in the data rate capability
of the input electrical and output optical lanes. QSFP-Double
Density (QSFP-DD) [13] and Octal Small Form Factor Plug-
gable (OSFP) [14], module types were designed to address this
need. As the electrical Serdes speeds got to 100 Gbit/s, the
same module types are being used to implement 800 Gbit/s
transceivers. The output optical lanes are still in multiples of
4 wavelengths.

There are pluggable transceiver proposals for data rates up to
3.2 Tbit/s. OSFP-eXtra Dense (The OSFP-XD) is a pluggable
module with 16 input electrical lanes [14]. At the highest data
rates, the signal rate which determines the analog bandwidth
needed in these applications, has reached 100 Gbaud. At these
baud rates, the electrical power needed to maintain signal in-
tegrity, limits the transmission distance over copper traces. This
leads us to the CPO [10], [15], where the optical transceivers
are small, highly integrated, and assembled close to the host,
which in many cases is a high-speed switch, on a common
substrate. This is a departure from the traditional pluggable
module approach to optical transceivers.

A. Evolution of Speed and Power Consumption

Table II shows the evolution of power consumption (un-
der worst case operating conditions) for the various module
types, in the specific applications listed, with the year when
they were first deployed. The power consumption includes all
the optical and electrical components within the transceiver.
Although the power consumption increases with data rate,
the normalized energy consumption, pJ/bit, has been dropping
dramatically.
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Fig. 3. Data rate and energy consumption for optical transceivers for the past
two decades.

As shown in Fig. 3, in the past 20 years, data rates in pluggable
modules have increased by 3 orders of magnitude, while the en-
ergy consumption per bit has dropped by 2 orders of magnitude.
This is a truly amazing achievement!

Using 2.5D integration, this power can be further reduced to
below 10 pJ/bit. A large contributor to the total module power
consumption is the host electrical interface. With integration,
as the optical modules get smaller and are co-packaged with
electrical host ASIC, the power at this interface can be reduced.
With even tighter integration, we may not need a DSP inside the
optical module, and it can be directly driven by the host ASIC.
At this point the power consumption may be reduced to about
5 pJ/bit.

In the past two decades, although the energy consumption per
bit has been reduced by a factor of 100 (Fig. 3), the actual power
consumption in the optical module has increased by a factor 10.
The signal (baud) rate, which determines the analog bandwidth,
has increased by a factor 100. These two trends have put a lot of
pressure on high speed and thermal packaging.

B. Evolution of Transceiver Optical Packaging

Optical transceiver packages, from different suppliers, vary
considerably in design. To simplify the discussion on high-speed
packaging, we have picked three cases shown in Fig. 4, where
we have simplified the layout, and only shown high-speed path
for the TIA.

The first row in Fig. 4 illustrates the current approach to
packaging optical transceivers. The DSP is usually a ball grid
array (BGA) package, or a bare die assembled on a high speed
printed circuit board (PCB). The TIA is wire bonded to the PCB
on one side, and wire bonded to the photonics device on the
other side. These wire bond lengths are short of the order of 500
µm or less. The middle row, in Fig. 4, is what many suppliers are
exploring, where a 2D optical device (integrated with the TIA)
is assembled next to the DSP via a wire bond.

Although the second assembly method is better, the two,
wire bond based approaches have limited analog bandwidth,
and signal discontinuities, as shown in the modeling results of
Fig. 5. The cleanest, from the high-speed packaging point of

Fig. 4. Evolving approaches to packaging in optical transceivers. The wire
bonds (top two diagrams) and TSV’s (bottom diagram) are in red. In addition
to the TSV’s, there may be one or more Re-Distribution Layers (RDL) at the
bottom of the silicon photonics interposer for signal routing.

Fig. 5. Normalized electrical insertion loss, as a function of frequency, for the
three packaging scenarios in Fig. 4.

view, is the last row in Fig. 4, where the silicon photonics device
is also an interposer with TSV’s, and the assembly is completely
free of wire bonds.

Ansys HFSS [16] program was used to design and simulate
the performance of all three structures shown in Fig. 4. For all
the wire bond cases, a double wire bond, using a 1 mil diameter
wire, were used, and the wire bond length is kept at 350 µm
to minimize the inductance discontinuity. As for the TSV case,
we have simulated the actual via structure, with layout metal
routing.

It is further worth pointing out that the modelling in Fig. 5, is
for an ideal case, where we have modelled 50Ω traces separated
by wire bonds. The resonances in the insertion loss behavior
for the wire bond cases, due to the discontinuities and ac-
tual device characteristics, will be worse in practice (occur at
lower frequencies), and will be assembly dependent. The use
of TSV’s allow for consistent high-speed performance of the
optical transceivers.

The other aspect is thermal where the assembly needs to be
cooled. Wire bonded assemblies are harder to cool, and the heat
needs to be pulled out from the bottom, thru the PCB. In 2.5D
integrated structures, the wire bonds are not “in the way”, and the
heat can be channeled to the top through package lid, in addition
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Fig. 6. 2D assembly using the silicon photonics chip as an interposer.

Fig. 7. The flip chip assembly process shows (a) the bumps as plated on the
ASIC’s, (b) the characteristic Cu bump shape after reflow, (c) the plated pads on
silicon photonics, and (d) the DFB laser resting on a stopper after AuSn solder
attach. The approximate scales have been included in the SEM’s. They are the
same for the first three SEM’s, and different for the fourth.

to the PCB. This becomes important in the higher power, higher
speed transceivers.

III. 2D INTEGRATION

Fig. 6 shows a 2D assembly on a silicon photonics chip used
as an interposer [3]. Integrated on this interposer (reference to
Fig. 1) we have a flip chip (FC) TIA, FC Driver, DFB lasers,
V-groove based fiber interface and single layer decoupling ca-
pacitors (SLC). This is assembled on a PCB and wire bonded
for operation.

Fig. 8. Top and side views of the completed DFB laser assembly in a trench
on the silicon photonics.

The silicon photonics chip is a dual channel device with edge
coupled optical fibers, Mach Zehnder modulators (MZM), high
speed Ge photodetectors (PD), wavelength multiplexers and de-
multiplexers.

A. Assembly

For the flip chip assembly process, the TIA and Driver wafers
are first “bumped”. As shown in Fig. 7(a) and (b), in the first
step, the TIA and Driver wafers are plated with Cu (copper)
pillar bumps, with SnAg (tin-silver) solder caps. The wafers
then undergo a thermal reflow process, and the Cu pillar bumps
get their final shape. The bumped TIA and DRV wafers are then
tested and diced, and the passing devices are assembled on to
the silicon photonics wafer.

The ASIC pads on the silicon photonics wafers are Cu-Ni-Au
(copper-nickel-gold) plated as shown in the Fig. 7(c). The DFB
pads, in a trench, are AuSn (gold-tin) solder plated.

Alignment structures are etched into a trench on the silicon
photonics wafer to accurately place the DFB, in the vertical
direction, with respect to the optical edge coupler [8] on the
silicon photonics chip. Fig. 7(d) shows the DFB laser resting
on one such vertical alignment structure. The optical coupling
loss is about 2.5 dB, largely due to the mismatch between the
non-optimal, asymmetric DFB mode and the symmetric edge
coupler input mode.

Accurate alignment of the DFB to the silicon photonics
coupler, and it’s subsequent soldering is a challenge. Using a
modern, precision alignment machine like the Amicra Nano
[17], the DFB can be accurately placed to within ±0.5 µm of
the target position, in practice.

As shown in Fig. 8, the DFB lasers are flip chip soldered to the
silicon photonics chip. There is a wire bond from the substrate
side (n-side) of the DFB to a pad on the silicon.

The SLC’s are attached using a conductive epoxy to the
silicon, as well as the PCB, as shown in Fig. 9. The fiber interface
is in a V-groove and epoxied on the silicon photonics chip as
shown in Fig. 6.

B. Performance

For laboratory evaluation, the 2D assembly is attached to a
high-speed PCB, as shown in Fig. 10, with high speed and DC
connectors. V-grooves integrated on the silicon photonics chip
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Fig. 9. SLC’s and the silicon photonics chip are epoxy attached to the PCB.

Fig. 10. Test PCB assembly of the 2D silicon photonics engine.

Fig. 11. Detailed optical spectrum of the 300 µm long DFB laser attached to
the silicon photonics interpose.

allow the use of a passively aligned fiber array assembly for the
various optical test configurations.

Fig. 11 shows the detailed optical spectrum of the DFB laser at
30 °C, with a bias current from 16 mA to 80 mA in steps of 2 mA.
The detailed spectrum shows that the back reflection at the DFB-
silicon photonics interface, if any, was not sufficient to cause
any spectral impairments. By measuring the wavelength shift
with temperature (dλ/dT) and with electrical power (dλ/dP), we
calculated the thermal resistance (dT/dP) of the 300 µm long
DFB laser attached to the silicon photonics interposer to be 60±2
°C/W.

Fig. 12. PAM ASIC test board used to drive the test PCB in Fig. 10.

Fig. 13. PAM eye diagram from the 2D light engine at 28.125Gbaud.

Fig. 14. 2.5D assembly of the 2D light engine on a high-speed, organic
substrate with a PAM4 DSP and other ASIC’s.

A PAM4 DSP test board, shown in Fig. 12, was used to drive
the 2D silicon photonics light engine via RF breakout cables.
The PAM4 output optical eye diagram from the light engine, for
28.125 Gbaud, is shown in Fig. 13.

The overall performance was impacted by the long RF cables
used to connect the PAM4 test board to the light engine PCB,
and the wire bonds from the light engine to the PCB. A fully
integrated version, discussed in the next section, does not suffer
the same penalty.

III. 2.5D INTEGRATION

Fig. 14 shows a 2.5D assembly of the 2D light engine on
high-speed substrate, with the high-speed DSP’s and controller
ASIC’s. This assembly does not use any wire bonds, except
for the DFB laser. As shown in the block diagram in Fig. 1,
the silicon photonics interposer has TSV’s and backside solder
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Fig. 15. Wafer level light engine assembly process.

bumps. This is assembled on an organic substrate using a mass
reflow process.

Using the existing semiconductor manufacturing ecosystem,
we can fabricate TSVs and backside C4 bumps on Si photonics
wafers. These are the key enabling features for realizing the
compact 2.5D integration.

The Si photonics wafers in this work were fabricated in a
commercial Si photonics foundry followed by a via-last TSV
process [18], [19], [20], [21], [22], [23], C4 bumping [24], die
attach and wafer dicing done at an assembly vendor.

A. Via-Last Process

2D silicon photonics interposer is manufactured at the wafer-
level [20]. Fig. 15 shows the details of the wafer-level, light
engine assembly flow.

The completed silicon photonics wafer is first thinned and
the TSV’s are formed using a “via-last” process. Next a Re-
Distribution Layer (RDL) [22] and C4 bumps are fabricated on
the bottom side of the wafer. The wafer is then ready for front
side die attach.

The via-last process, from the back side of the wafer is used
to fabricate the TSVs in a silicon photonics wafer. It is more
supply-chain friendly compared to the via-first and via-middle
processes. Although silicon photonics foundries have rapidly
grown in recent years, few of them provide an integrated TSV
process. On the other hand, many Outsourced Semiconductor
Assembly and Test (OSAT) companies have established TSV
process that can be easily used with a silicon photonics wafer.
Most of the OSAT TSV processes rely on via-last integration
scheme. We believe that CMOS foundry silicon photonics pro-
cess followed by OSAT-based via-last process is a supply-chain
friendly solution for enabling 2.5D integration.

A typical via-last process is shown as in Fig. 16. At the OSAT
the silicon photonics wafer is first attached onto a carrier wafer.
Grinding and polishing is used to thin the silicon photonics
wafer down to a thickness of 50 µm to 200 µm, based on the
OSAT’s TSV capability. Then, the TSV is etched, stopping on
designated metal pads embedded on the front side of the wafer.
Following the TSV etching, a dielectric layer is applied into the
via for electrical isolation and surface passivation. Next a RDL

Fig. 16. Via-last TSV process flow for the 2.5D silicon photonics interposer.
(a) Silicon photonics start wafer. (b) Bonding to a carrier. (c) Wafer thinning and
TSV etching. (d) Dielectric deposition. (e) RDL formation. (f) Back side C4 or
Cu pillar bumping.

is formed by a plating process. C4 or Cu pillar bumping process
is then done to form the interconnect on the back side of the
wafer.

B. Assembly

A chip-to-wafer (also called the die-to-wafer) bonding pro-
cess is used to assemble the DFB, TIA and DRV on the top side
of the silicon photonics wafer.

The TIA and DRV wafers are tested, diced into individual dies
and the passing dies are sorted for assembly on to the silicon
photonics wafer. As in the 2D process, the TIA and DRV wafers
have Cu bumps on them.

The completed wafer, after the assembly process, is shown in
Fig. 17. The fully assembled wafer is first tested, diced and the
yielded light engine dies go on to the substrate assembly step.
The inset in Fig. 17 shows an individual light engine which has
been diced from a completed wafer.

The light engine interposer assembly is then attached to the
organic substrate using mass reflow. After the reflow step, the
C4 (controlled collapse chip connection) bumps on the rear of
the light engine form the electrical connection to the substrate.

A planar lightwave circuit (PLC) fiber array assembly (as
shown in Fig. 14) was used as the optical signal edge coupler.
This, prefabricated, multi-fiber assembly, is actively aligned to
the silicon photonics chip and epoxied to the substrate. The
optical coupling is less than 1 dB.

Fig. 18 shows the cross-section of the silicon photonics inter-
poser on a multi-layer organic substrate assembly of Fig. 14. The
assembly in Fig. 18 consists of TIA, DRV and DFB on a silicon
photonics interposer. Fig. 18 shows the TSV’s and C4 bumps on
the interposer and the details of the multi-layer organic substrate.
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Fig. 17. 200 mm/300 mm wafer level assembly. The diced light engine is
shown as the inset.

Fig. 18. Cross section of the 2.5D assembly using the silicon photonics as the
interposer. An approximate scale has been included in the SEM.

Fig. 19. PAM eye diagram at 26.5625 Gbaud (53.125 Gbit/s). Eye diagrams
for 4 channels are shown.

This is the power of 2.5D heterogeneous integration. The
electronic ASIC’s (CMOS and Bi-CMOS) and photonics can
be from different semiconductor technologies, wafer sizes (200
mm or 300 mm) and foundries. They can all be integrated onto
a common platform.

C. Performance

Fig. 19 shows optical transmit eye diagrams for 26.5625
Gbaud PAM4 (53.125 Gbit/s equivalent data rate). Fig. 20 shows

Fig. 20. PAM eye diagram at 53.125 Gbaud (106.25 Gbit/s). Eye diagrams
for 4 channels are shown.

Fig. 21. Switch (Teralynx7TM) integrated with 16 2.5D integrated optical
modules shown in Fig. 14.

the same module operating a twice the baud rate, for a data rate
of 106.25 Gbit/s.

The DSP’s in the package have internal pseudo-random bit
sequence (PRBS) generators. We use that feature to generate
the optical eye diagrams and generally test the modules. The
quality of the optical eye diagrams both at 53.125 Gbit/s and
106.25 Gbit/s are very good.

The TDECQ (transmitter and dispersion eye closure quater-
nary) [25], [26] for the 53.125 Gbit/s mode (Fig. 19) is less than
1.0 dB and for the 106.25 Gbit/s mode (Fig. 20) is in the range
of 2.0 dB. Since the light engine was optimized for 100 Gbit/s
operation, the performance at 50 Gbit/s was very good. The
TDECQ performance for both applications is well below the
IEEE specifications [27], [28].

We are working on improving the TDECQ performance of
the 106.25 Gbit/s mode, by further optimizing the equalization
at the DSP-light engine interface.

IV. SYSTEM LEVEL APPLICATIONS

Fig. 21 shows 16 of these 2.5D optical engine modules (one of
them, a lidded version of Fig. 14, is shown as an inset in Fig. 21)
assembled on a common high-speed PCB with a 12.8 Tbit/s
Teralynx7TM host switch ASIC [29]. This PCB is attached, via
mezzanine connector, to the main board which has the power
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supplies, cooling fans, CPU, memory, etc., needed for operation
in a chassis.

The switch carried traffic in a recent live demo [30].

V. CONCLUSION

Heterogeneous integration is an enabler for realizing higher
speed optical components. Eliminating wire bonds and other
sources of signal discontinuities are the key for high speed and
improved thermal performance.

There are several approaches to heterogeneous integration,
and we have explored one in this paper. The method discussed
here uses the silicon photonics chip as the interposer for the
2D integration. This interposer, with TSV’s and backside solder
bumps, is assembled on to a high-speed substrate for the final
2.5D assembly.

This approach may be extended to include multiple 2D
structures on a common substrate to manufacture an optical
component with extended functionality or to enable the optical
component to be integrated with a much larger ASIC, like a
switch, to realize a CPO on a common substrate. These CPO’s
can then be used to form very compact systems with co-located
switch and optical modules.

ACKNOWLEDGMENT

The authors would like to thank the exceptional engineering
team at Marvell which contributed enormously to this work.

REFERENCES

[1] R. Nagarajan, C. Doerr, and F. Kish, “Semiconductor photonic integrated
circuit transmitters and receivers,” in Optical Fiber Telecommunications,
vol. VI A, I. Kaminow, T. Li, and A. Willner Eds. New York, NY, USA:
Elsevier, 2013, pp. 25–98.

[2] M. Rakowski et al., “45nm CMOS - Silicon Photonics monolithic tech-
nology (45CLO) for next-generation, low power and high speed optical
interconnects,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2020, pp. 1–3.

[3] R. Nagarajan, L. Ding, M. Kato, and R. Tan, “2.5D Heterogenous silicon
photonics light engine with integrated DFB lasers and electronics,” in Proc.
OCP Future Technol. Symp., 2020, Art. no. FTS116s2.

[4] H. Yu et al., “400Gbps Fully integrated DR4 silicon photonics transmitter
for data center applications,” in Proc. Opt. Fiber Commun. Conf. Exhib.,
2020, pp. 1–3.

[5] “Chapter 22: Interconnects for 2D and 3D architectures,” IEEE Hetero-
geneous Integration Roadmap, 2021, [Online]. Available: http://eps.ieee.
org/hir

[6] J. Lau, Semiconductor Advanced Packaging. Singapore: Springer, 2021.
[7] “About 2.5D technology,” [Online]. Available: https://nhanced-semi.com/

technology/about-2-5d-technology/
[8] S. Y. Siew et al., “Review of silicon photonics technology and platform de-

velopment,” J. Lightw. Technol., vol. 39, no. 13, pp. 4374–4389, Jul. 2021.
[9] C. Xiang et al., “High-performance silicon photonics using heteroge-

neous integration,” IEEE J. Sel. Top. Quantum Electron., vol. 28, no. 3,
May–Jun. 2022, Art. no. 8200515.

[10] R. Mahajan et al., “Co-packaged photonics for high performance com-
puting: Status, challenges and opportunities,” J. Lightw. Technol., vol. 40,
no. 2, pp. 379–392, Jan. 2022.

[11] SFP Multi-Source Agreement, 2006, [Online]. Available: http://www.snia.
org/sff/specifications

[12] CWDM4 Multi-Source Agreement, 2014, [Online]. Available: http://
www.cwdm4-msa.org/

[13] QSFP-DD Multi-Source Agreement, 2016, [Online]. Available: http://
www.qsfp-dd.com/

[14] OSFP Multi-Source Agreement, 2017, [Online]. Available: https://
osfpmsa.org/

[15] “Implementation agreement for a 3.2Tb/s co-packaged (CPO) module,” in
Proc. Opt. Internetworking Forum, 2022, pp. 1–28.

[16] Ansys HFSS, 2021, [Online]. Available: https://www.ansys.com/
products/electronics/ansys-hfss

[17] NANO - Die Bonder and Flip Chip Bonder, 2018, [Online]. Available:
https://amicra.semi.asmpt.com/en/products/die-flip-chip-bonder/nano-
die-bonder-and-flip-chip-bonder/

[18] X. Zhang et al., “Heterogeneous 2.5D integration on through silicon
interposer,” Appl. Phys. Rev., vol. 2, 2015, Art. no. 021308.

[19] X. Jing, F. Dai, W. Zhang, and L. Cao, “Via last TSV process for wafer
level packaging,” in Proc. IEEE 17th Int. Conf. Electron. Packag. Technol.,
2016, pp. 1216–1218.

[20] L. Ding et al., “Demonstration of OSAT compatible 300 mm through Si
interposer,” in Proc. IEEE 15th Int. Conf. Electron. Packag. Technol., 2013,
pp. 430–434.

[21] M. J. Kim et al., “Novel 2.5D RDL interposer packaging: A key enabler for
the new era of heterogenous chip integration,” in Proc. IEEE 71st Electron.
Comp. Technol. Conf., 2021, pp. 321–326.

[22] T. Zhou, T. Hang, S. Ma, and M. Xiang, “Design and development of
encapsulation process for CIS-TSV wafer level package,” in Proc. IEEE
21st Int. Conf. Electron. Packag. Technol., 2020, pp. 1–3.

[23] Y. Yang et al., “Though-Si-via (TSV) keep-out-zone (KOZ) in SOI pho-
tonics interposer: A study of the impact of TSV-induced stress on Si ring
resonators,” IEEE Photon. J., vol. 5, no. 6, Dec. 2013, Art. no. 2700611.

[24] S. Ray, K. Beckham, and R. Master, “Flip-chip interconnection technology
for advanced thermal conduction modules,” in Proc. IEEE 41st Electron.
Comp. Technol. Conf., 1991, pp. 772–778.

[25] J. King, D. Leyba, and G. LeCheminant, “TDECQ (transmitter dispersion
eye closure quaternary) replaces historic eye-mask and TDP test for 400
Gb/s PAM4 optical transmitters,” in Proc. Opt. Fiber Commun. Conf.
Exhib., 2017, pp. 1–3.

[26] S. Echeverri-Chacón et al., “Transmitter and dispersion eye closure qua-
ternary (TDECQ) and its sensitivity to impairments in PAM4 waveforms,”
J. Lightw. Technol., vol. 37, no. 3, pp. 852–860, Feb. 2019.

[27] IEEE Standard for Ethernet - Amendment 10: Media Access Control
Parameters, Physical Layers, and Management Parameters for 200 Gb/s
and 400 Gb/s Operation, in IEEE Std 802.3bs-2017 (Amendment to
IEEE 802.3-2015 as amended by IEEE’s 802.3bw-2015, 802.3by-2016,
802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-
2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017),
2017.

[28] IEEE Standard for Ethernet - Amendment 11: Physical Layers and
Management Parameters for 100 Gb/s and 400 Gb/s Operation over
Single-Mode Fiber at 100 Gb/s per Wavelength, in IEEE Std 802.3cu-2021
(Amendment to IEEE Std 802.3-2018 and its approved amendments), 2021.

[29] “Marvell Teralynx 7 Data Center Ethernet Switch, 2021, [Online].
Available: https://www.marvell.com/content/dam/marvell/en/public-
collateral/switching/marvell-teralynx-7-product-brief.pdf

[30] “Marvell unveils co-packaged optics technology platform at OFC
2022,” 2022, [Online]. Available: https://www.marvell.com/company/
newsroom/marvell-unveils-co-packaged-optics-technology-platform-
at-ofc-2022.html

Radhakrishnan Nagarajan (Fellow, IEEE) received the B.Eng. degree (1st
Class Hons.) in electrical engineering from the National University of Singapore,
Singapore, the M.Eng. degree in electronic engineering from the University of
Tokyo, Tokyo, Japan, and the Ph.D. degree in electrical engineering from the
University of California, Santa Barbara, CA, USA.

He is currently the SVP and CTO with Marvell, Optical Connectivity Group.
He was a Fellow with Infinera, where he led the development of multiple
generations of InP based large scale photonics integrated circuits. Prior to that,
he was with SDL, which was acquired by JDS Uniphase, where he developed
high power pump laser modules for EDFA applications. He has authored and
coauthored more than 190 publications in journals and conferences, and five
book chapters in the areas of high-speed optical components and photonics
integration. He has been awarded 221 U.S. patents.

Dr. Nagarajan is a Fellow of the Optical Society (Optica) and a Fellow of
the Institution of Engineering and Technology. He was the recipient of the
2022 IPRM Award and 2006 IEEE LEOS Aron Kressel Award and for his
breakthrough contributions to the commercialization of Large Scale Photonic
Integrated Circuits.

http://eps.ieee.org/hir
http://eps.ieee.org/hir
https://nhanced-semi.com/technology/about-2-5d-technology/
https://nhanced-semi.com/technology/about-2-5d-technology/
http://www.snia.org/sff/specifications
http://www.snia.org/sff/specifications
http://www.cwdm4-msa.org/
http://www.cwdm4-msa.org/
http://www.qsfp-dd.com/
http://www.qsfp-dd.com/
https://osfpmsa.org/
https://osfpmsa.org/
https://www.ansys.com/products/electronics/ansys-hfss
https://www.ansys.com/products/electronics/ansys-hfss
https://amicra.semi.asmpt.com/en/products/die-flip-chip-bonder/nano-die-bonder-and-flip-chip-bonder/
https://amicra.semi.asmpt.com/en/products/die-flip-chip-bonder/nano-die-bonder-and-flip-chip-bonder/
https://www.marvell.com/content/dam/marvell/en/public-collateral/switching/marvell-teralynx-7-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/switching/marvell-teralynx-7-product-brief.pdf
https://www.marvell.com/company/newsroom/marvell-unveils-co-packaged-optics-technology-platform-at-ofc-2022.html
https://www.marvell.com/company/newsroom/marvell-unveils-co-packaged-optics-technology-platform-at-ofc-2022.html
https://www.marvell.com/company/newsroom/marvell-unveils-co-packaged-optics-technology-platform-at-ofc-2022.html


NAGARAJAN et al.: 2.5D HETEROGENEOUS INTEGRATION FOR SILICON PHOTONICS ENGINES IN OPTICAL TRANSCEIVERS 8200209

Liang Ding received the B.S. degree in optical and optoelectronic physics from
the Huazhong University of Science and Technology, Wuhan, China, and the
Ph.D. degree from the Division of Microelectronics, School of Electrical and
Electronic Engineering, Nanyang Technological University, Singapore.

He is currently a Senior Principal Engineer with Marvell Semiconductors
working on packaging technology development for Marvell’s optics product line.
Prior to Marvell, he was a Research Scientist with the Institute of Microelec-
tronics, Agency for Science, Technology and Research, Singapore, from 2008
to 2014. He has authored and coauthored more than 100 papers in journals and
conferences in Si photonics, advanced packaging, and Si nanocrystal electronics
and optoelectronic devices.

Dr. Ding was the recipient of the prestigious Singapore Millennium Founda-
tion Ph.D. Fellowship in 2007. In 2008, he was also the recipient of the Chinese
Government Award for Outstanding Self-financed Student Abroad.

Roberto Coccioli (Senior Member, IEEE) received the Ph.D. degree in electrical
engineering from the University of Florence, Florence, Italy, in 1995.

After Postdoctoral studies with UCLA in the field of computational meth-
ods for electromagnetics applied to microwave and optical devices, he joined
Conexant Systems working on the area of microelectronic packaging. He joined
Inphi in May 2001, later acquired by Marvell in 2021, and his current role is the
Sr. Director of package development leading a team of engineers responsible for
all aspects of package design for high-data rate serdes and silicon photonic de-
vices, including signal and power integrity, thermal management, chip-package
mechanical interaction, and manufacturability.

Roberto Coccioli holds 30 US patents in the field of microelectronic and
silicon photonic packaging.

Masaki Kato received the B.Eng. degree in electrical engineering, the M.Eng.
degree in electronic engineering, and the Ph.D. degree in electrical engineering
from the University of Tokyo, Tokyo, Japan. He is currently the AVP of Optical
Engineering at Marvell leading the development of Silicon Photonics circuits.
He was a Distinguished Engineer with Infinera, where he worked on InP-based
large scale photonics integrated circuits. He has authored and coauthored more
than 80 publications in journals and conferences. He has been awarded 94 U.S.
patents.

Ronson Tan received the B.S. (highest Hons.), M.S., and Ph.D. (1993) degrees
in electrical engineering from the Georgia Institute of Technology in Atlanta,
Atlanta, GA, USA. Over the years, he has been involved in the development
of multiple optical transceiver platforms. He is currently the Senior Principal
Engineer at Marvell and was with JDS Uniphase. Prior to JDS Uniphase, he
cofounded E2O Communications which was later acquired. Prior to that, he
was with HP’s Optical Communications Division.

Pushkraj Tumne received the B.Eng. degree in mechanical engineering from
the University of Mumbai, Mumbai, India, the M.Eng. and Ph.D. degrees in
industrial and systems engineering from the State University of New York,
Binghamton, NY, USA. He is currently a Principal Packaging Engineer with
Marvell. He has more than ten years of IC package technology development
experience. His area of expertise is in research and technology integration of
complex, hybrid MCM packages, and 2.5D silicon photonics modules.

Mark Patterson received the B.S. degree in mechanical engineering from the
University of California, San Diego, CA, USA, in 1998, and the M.S. degree in
mechanical engineering from San Diego State University, San Diego, CA, USA,
in 2009. He is currently Principal Packaging Engineer with Marvell Semicon-
ductor working in the area of mechanical and thermal design of optoelectronic
packaging and systems. He developed packaging solutions for various telecom
and high-speed digital applications with Applied Micro Circuits, now MACOM.
He has been issued seven U.S. patents.

Linda Liu received the B.S. degree in electrical engineering from San Jose
State University, San Jose, CA, USA. She is also the Sr. Principal Engineer with
Marvell, Optical Connectivity Group. She was a Distinguished Technical Staff
with Lumentum.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


