In order to benefit from the greater convenience offered for employees and more straightforward implementation, office environments are steadily migrating towards wholesale wireless connectivity. Thanks to this, office staff will no longer be limited by where there are cables/ports available, resulting in a much higher degree of mobility. It will mean that they can remain constantly connected and their work activities won’t be hindered - whether they are at their desk, in a meeting or even in the cafeteria. This will make enterprises much better aligned with our modern working culture - where hot desking and bring your own device (BYOD) are becoming increasingly commonplace.
The main dynamic which is going to be responsible for accelerating this trend will be the emergence of 802.11ac Wave 2 Wi-Fi technology. With the prospect of exploiting Gigabit data rates (thereby enabling the streaming of video content, faster download speeds, higher quality video conferencing, etc.), it is clearly going to have considerable appeal. In addition, this protocol offers extended range and greater bandwidth through multi-user MIMO operation - so that a larger number of users can be supported simultaneously. This will be advantageous to the enterprise, as less access points per users will be required.
An example of the office floorplan for an enterprise/campus is described in Figure 1 (showing a large number of cubicles and also some meeting rooms too). Though scenarios vary, generally speaking an enterprise/campus is likely to occupy a total floor space of between 20,000 and 45,000 square feet. With one 802.11ac access point able to cover an area of 3000 to 4000 square feet, a wireless office would need a total of about 8 to 12 access points to be fully effective. This density should be more than acceptable for average voice and data needs. Supporting these access points will be a high capacity wireline backbone.
Increasingly, rather than employing traditional 10 Gigabit Ethernet infrastructure, the enterprise/campus backbone is going to be based on 25 Gigabit Ethernet technology. It is expected that this will see widespread uptake in newly constructed office buildings over the next 2-3 years as the related optics continue to become more affordable. Clearly enterprises want to tap into the enhanced performance offered by 802.11ac, but they have to do this while also adhering to stringent budgetary constraints too. As the data capacity at the backbone gets raised upwards, so will the complexity of the hierarchical structure that needs to be placed underneath it, consisting of extensive intermediary switching technology. Well that’s what conventional thinking would tell us.
Before embarking on a 25 Gigabit Ethernet/802.11ac implementation, enterprises have to be fully aware of what all this entails. As well as the initial investment associated with the hardware heavy arrangement just outlined, there is also the ongoing operational costs to consider. By aggregating the access points into a port extender that is then connecting directly to the 25 Gigabit Ethernet backbone instead towards a central control bridge switch, it is possible to significantly simplify the hierarchical structure - effectively eliminating a layer of unneeded complexity from the system.
Through its Passive Intelligent Port Extender (PIPE) technology Marvell is doing just that. This product offering is unique to the market, as other port extenders currently available were not originally designed for that purpose and therefore exhibit compromises in their performance, price and power. PIPE is, in contrast, an optimized solution that is able to fully leverage the IEEE 802.1BR bridge port extension standard - dispensing with the need for expensive intermediary switches between the control bridge and the access point level and reducing the roll-out costs as a result. It delivers markedly higher throughput, as the aggregating of multiple 802.11ac access points to 10 Gigabit Ethernet switches has been avoided. With fewer network elements to manage, there is some reduction in terms of the ongoing running costs too.
PIPE means that enterprises can future proof their office data communication infrastructure - starting with 10 Gigabit Ethernet, then upgrading to a 25 Gigabit Ethernet when it is needed. The number of ports that it incorporates are a good match for the number of access points that an enterprise/campus will need to address the wireless connectivity demands of their work force. It enables dual homing functionality, so that elevated service reliability and resiliency are both assured through system redundancy. In addition, supporting Power-over-Ethernet (PoE), allows access points to connect to both a power supply and the data network through a single cable - further facilitating the deployment process.
Copyright © 2024 Marvell, All rights reserved.