We’re Building the Future of Data Infrastructure

Archive for the 'SSD Controllers' Category

  • August 17, 2023

    Marvell Bravera SC5 SSD Controller Named Winner at FMS 2023 Best of Show Awards

    By Kristin Hehir, Senior Manager, PR and Marketing, Marvell

     

    Marvell and Memblaze were honored with the “Most Innovative Customer Implementation” award at the Flash Memory Summit (FMS), the industry’s largest conference featuring flash memory and other high-speed memory technologies, last week.
    Powered by the Marvell® Bravera™ SC5 controller, Memblaze developed the PBlaze 7 7940 GEN5 SSD family, delivering an impressive 2.5 times the performance and 1.5 times the power efficiency compared to conventional PCIe 4.0 SSDs and ~55/9us read/write latency1. This makes the SSD ideal for business-critical applications and high-performance workloads like machine learning and cloud computing. In addition, Memblaze utilized the innovative sustainability features of Marvell’s Bravera SC5 controllers for greater resource efficiency, reduced environmental impact and streamlined development efforts and inventory management.

  • January 04, 2023

    Software-Defined Networking for the Software-Defined Vehicle

    By Amir Bar-Niv, VP of Marketing, Automotive Business Unit, Marvell and John Heinlein, Chief Marketing Officer, Sonatus and Simon Edelhaus, VP SW, Automotive Business Unit, Marvell

    The software-defined vehicle (SDV) is one of the newest and most interesting megatrends in the automotive industry. As we discussed in a previous blog, the reason that this new architectural—and business—model will be successful is the advantages it offers to all stakeholders:

    • The OEMs (car manufacturers) will gain new revenue streams from aftermarket services and new applications;
    • The car owners will easily upgrade their vehicle features and functions; and
    • The mobile operators will profit from increased vehicle data consumption driven by new applications.

    What is a software-defined vehicle? While there is no official definition, the term reflects the change in the way software is being used in vehicle design to enable flexibility and extensibility. To better understand the software-defined vehicle, it helps to first examine the current approach.

    Today’s embedded control units (ECUs) that manage car functions do include software, however, the software in each ECU is often incompatible with and isolated from other modules. When updates are required, the vehicle owner must visit the dealer service center, which inconveniences the owner and is costly for the manufacturer.

  • November 28, 2022

    A Marvell-ous Hack Indeed – Winning the Hearts of SONiC Users

    By Kishore Atreya, Director of Product Management, Marvell

    Recently the Linux Foundation hosted its annual ONE Summit for open networking, edge projects and solutions. For the first time, this year’s event included a “mini-summit” for SONiC, an open source networking operating system targeted for data center applications that’s been widely adopted by cloud customers. A variety of industry members gave presentations, including Marvell’s very own Vijay Vyas Mohan, who presented on the topic of Extensible Platform Serdes Libraries. In addition, the SONiC mini-summit included a hackathon to motivate users and developers to innovate new ways to solve customer problems. 

    So, what could we hack?

    At Marvell, we believe that SONiC has utility not only for the data center, but to enable solutions that span from edge to cloud. Because it’s a data center NOS, SONiC is not optimized for edge use cases. It requires an expensive bill of materials to run, including a powerful CPU, a minimum of 8 to 16GB DDR, and an SSD. In the data center environment, these HW resources contribute less to the BOM cost than do the optics and switch ASIC. However, for edge use cases with 1G to 10G interfaces, the cost of the processor complex, primarily driven by the NOS, can be a much more significant contributor to overall system cost. For edge disaggregation with SONiC to be viable, the hardware cost needs to be comparable to that of a typical OEM-based solution. Today, that’s not possible.

  • April 27, 2022

    Optimizing SSDs for Industrial and Edge Applications

    By Pichai Balaji, Director, Product Marketing, Flash BU, Marvel

    Industrial SSDs are specifically designed for high-performance systems where data integrity and reliability are of the utmost importance. Industrial SSDs cover a wide range of applications including industrial data storage, heavy robotics, retail kiosks, medical systems, security surveillance, video monitoring, and gaming, to name a few.

    When most people hear the term “industrial SSD,” they immediately think of a ruggedized, high-temperature SSD in a metal casing. While such drives are part of the industrial class of SSDs, most industrial and edge applications have a wider range of requirements in terms of SSD controller hardware, firmware, SSD form factor, drive capacity, endurance, reliability, and use case/workload.

    For these applications, it is critical that the SSD meets industrial quality standards, and long-term reliability and performance requirements. These SSD devices must be able to withstand industrial grade temperatures, as well as a higher level of shock and vibration. Some applications need these SSDs to operate in ambient temperatures ranging from -40°C to 85°C. In such extreme conditions, data loss is a serious concern.

    Marvell’s 88SS1321/22 SSD controllers are designed to meet the industrial requirements on temperature endurance, longevity, and performance. Marvell’s 88SS1321 device also provides flexibility for the industrial SSD maker to choose the SSD form factor (supports 2.5” / U.2; m.2 2230 to 22110), and  choose to use the SSD with or without DRAM (optional).

    Exascend recently launched an industrial grade PCIe Gen 4 SSD – the PI4 Series. Powered by Marvell’s 88SS1321 PCIe Gen 4 SSD controller, the SSD offers 3500MB/s performance and can operate in an extreme temperature range of -40°C to 85°C. It offers full disk encryption / TCG OPAL 2.0 in M.2 (2280 & 2242), U.2, E1.S and CFexpress form factors for industrial and ADAS storage applications.

    Marvell’s 88SS1321/22 SSD controller hardware is designed to offer SSD firmware the maximum control to optimize SSD level solutions for different workloads in a wide range of industrial and edge applications. The product’s reference design has been validated from standards/spec compliance, as well as from an electrical compatibility perspective. The board design BOM is also cost-optimized for low cost of ownership. More information on these benefits can be found here.

    Additionally, various SKUs within the product offer added flexibility to SSD makers, enabling them to address applications that may require DRAM and a wider range of operating temperatures.

    With the integration of AI/ML, industrial systems have become autonomous and more distributed in recent years. The proliferation of AI-based IoT (AIoT) devices has increased end-to-end system complexity, pushing compute and storage resources to the edge in order to leverage low-latency 5G connectivity and/or Ethernet Time Sensitive Networking (TSN) for real-time, mission-critical data access and processing.

    Innodisk is another industrial SSD maker who has recently launched multiple PCIe Gen 4 industrial-grade SSDs with Marvell’s 88SS1321/22 SSD controllers that can operate with or without DRAM. The Innodisk PCIe 4TE and 4TG-P are the first industrial-oriented PCIe 4.0 SSDs turbocharging 5G and AIoT. The product can work in -40°C and 85°C environments, where some specific applications, including smart streetlights, 5G mmWave, and security inspection cameras, are critical for industrial strength. The PCIe 4TE and 4TG-P support AES-256 encryption and are TCG-OPAL 2.0 compliant.

    Other key features of Marvell’s industrial SSD controllers include:

    • Support for both DRAM and in DRAM-less operation
    • Support for a wide range of form factors, including m.2 110 to 30, CFexpress and BGA SSD
    • SDK firmware to kickstart the development and customization of the SSD for the end-user application/workload
    • Offered in C-temp (0°C-70°C) and I-temp (-40°C-85°C) SKUs

    Marvell’s 88SS1321/22 SSD controllers are designed to allow firmware to be optimized for many different applications. A host of SKUs built on the same architecture allow SSD developers to leverage Marvell’s reference design to develop their own SSD for various form factors, capacity, endurance, and reliability standards including ruggedized, high-temp SSDs with metal casings.

    Learn more about Marvell’s 88SS1321/22 product series of SSD controllers here.

     

     

  • March 24, 2022

    Marvell Bravera SC5 SSD Controller Family Named “Semiconductor Product of the Year” in the 2022 Data Breakthrough Awards

    By Kristin Hehir, Senior Manager, PR and Marketing, Marvell

    Data Breakthrough, an independent market intelligence organization that recognizes the top companies, technologies and solutions in the global data technology market, today announced the 2022 winners of its Data Breakthrough Awards. Marvell is thrilled to share that its Bravera™ SC5 SSD controller family  was named “Semiconductor Product of the Year” in the Hardware/Components & Infrastructure category.

    Marvell’s Bravera SC5 controllers are the industry’s first PCIe 5.0 SSD controllers, enabling the highest performing data center flash storage solutions. By bringing unprecedented performance, best-in-class efficiency, and leading security features, Bravera SC5 addresses the critical requirements for scalable, containerized storage for optimal cloud infrastructure. Marvell’s Bravera SC5 doubles the performance compared to PCIe 4.0 SSDs, contributing to accelerated workloads and reduced latency, dramatically improving the user experience.

    “Our Bravera SC5 controllers were developed alongside cloud providers, NAND vendors and the larger ecosystem to meet the critical requirements for faster and higher bandwidth cloud storage,” said Thad Omura, vice president of marketing, Flash Business Unit at Marvell. “This award further validates the innovative feature set our solution brings to address the ever-expanding workloads in the cloud. We thank Data Breakthrough for recognizing the vital role that semiconductors play across the digital data industry.” 

    The Data Breakthrough award nominations were evaluated by an independent panel of experts within the larger fields of data science and technology, with the winning products and companies selected based on a variety of criteria, including most innovative and technologically advanced solutions and services.

    More information about the awards can be found here.

  • December 06, 2021

    Marvell and Ingrasys Collaborate to Power Ceph Cluster with EBOF in Data Centers

    By Khurram Malik, Senior Manager, Technical Marketing, Marvell

    A massive amount of data is being generated at the edge, data center and in the cloud, driving scale out Software-Defined Storage (SDS) which, in turn, is enabling the industry to modernize data centers for large scale deployments. Ceph is an open-source, distributed object storage and massively scalable SDS platform, contributed to by a wide range of major high-performance computing (HPC) and storage vendors. Ceph BlueStore back-end storage removes the Ceph cluster performance bottleneck, allowing users to store objects directly on raw block devices and bypass the file system layer, which is specifically critical in boosting the adoption of NVMe SSDs in the Ceph cluster. Ceph cluster with EBOF provides a scalable, high-performance and cost-optimized solution and is a perfect use case for many HPC applications. Traditional data storage technology leverages special-purpose compute, networking, and storage hardware to optimize performance and requires proprietary software for management and administration. As a result, IT organizations neither scale-out nor make it feasible to deploy petabyte or exabyte data storage from a CAPEX and OPEX perspective.
    Ingrasys (subsidiary of Foxconn) is collaborating with Marvell to introduce an Ethernet Bunch of Flash (EBOF) storage solution which truly enables scale-out architecture for data center deployments. EBOF architecture disaggregates storage from compute and provides limitless scalability, better utilization of NVMe SSDs, and deploys single-ported NVMe SSDs in a high-availability configuration on an enclosure level with no single point of failure.

    Power Ceph Cluster with EBOF in Data Centers image 1

    Ceph is deployed on commodity hardware and built on multi-petabyte storage clusters. It is highly flexible due to its distributed nature. EBOF use in a Ceph cluster enables added storage capacity to scale up and scale out at an optimized cost and facilitates high-bandwidth utilization of SSDs. A typical rack-level Ceph solution includes a networking switch for client, and cluster connectivity; a minimum of 3 monitor nodes per cluster for high availability and resiliency; and Object Storage Daemon (OSD) host for data storage, replication, and data recovery operations. Traditionally, Ceph recommends 3 replicas at a minimum to distribute copies of the data and assure that the copies are stored on different storage nodes for replication, but this results in lower usable capacity and consumes higher bandwidth. Another challenge is that data redundancy and replication are compute-intensive and add significant latency. To overcome all these challenges, Ingrasys has introduced a more efficient Ceph cluster rack developed with management software – Ingrasys Composable Disaggregate Infrastructure (CDI) Director.

Archives