By Michael Kanellos, Head of Influencer Relations, Marvell
Computer architects have touted the performance and efficiency gains that can be achieved by replacing copper interconnects with optical technology in servers and processors for decades1.
With AI, it’s finally happening.
Marvell earlier this month announced that it will integrate co-packaged optics (CPO) technology into custom AI accelerators to improve the bandwidth, performance and efficiency of the chips powering AI training clusters and inference servers and opening the door to higher-performing scale-up servers.
The foundation of the offering is the Marvell 6.4Tbps 3D SiPho Engine announced in December 2023 and first demonstrated at OFC in March 2024. The 3D SiPho Engine effectively combines hundreds of components—drivers, transimpedance amplifiers, modulators, etc.—into a chiplet that itself becomes part of the XPU.
With CPO, XPUs will connect directly into an optical scale-up network, transmitting data further, faster, and with less energy per bit. LightCounting estimates that shipments of CPO-enabled ports in servers and other equipment will rise from a nominal number of shipments per year today to over 18 million by 20292.
Additionally, the bandwidth provided by CPO lets system architects think big. Instead of populating data centers with conventional servers containing four or eight XPUs, clouds can shift to systems sporting hundreds or even thousands of CPO-enhanced XPUs spread over multiple racks based around novel architectures—innovative meshes, torus networks—that can slash cost, latency and power. If supercomputers became clusters of standard servers in the 2000s, AI is shifting the pendulum back and turning servers into supercomputers again.
“It enables a huge diversity of parallelism schemes that were not possible with a smaller scale-up network domain,” wrote Dylan Patel of SemiAnalysis in a December article.
By Michael Kanellos, Head of Influencer Relations, Marvell
What happened in semis and accelerated infrastructure in 2024? Here is the recap:
1. Custom Controls the Future
Until relatively recently, computing performance was achieved by increasing transistor density à la Moore’s Law. In the future, it will be achieved through innovative design, and many of those innovative design ideas will come to market first—and mostly— through custom processors tailored to use cases, software environments and performance goals thanks to a convergence of unusual and unstoppable forces1 that quietly began years ago.
FB NIC on display at OFC
By Michael Kanellos, Head of Influencer Relations, Marvell
The idea of customizing high bandwidth memory (HBM) has only recently emerged, but expect to see it in the mainstream in just a few years.
“We strongly believe that custom HBM will be the majority portion of the market towards the ’27-28 time frame,” said In Dong Kim, vice president of product planning at Samsung Semiconductor in a video interview with the Six Five at Marvell Analyst Day earlier this month where Marvell, Micron Technology, Samsung and SK hynix announced a collaboration to accelerate the development of custom HBM solutions.
Sunny Kang, vice president of DRAM technology at SK Hynix had a similar outlook. “Usually in the DRAM industry, when we launch a new product, it takes just one or two years to be mainstream,” he said. “That means along the ‘29 timeframe, it is going to be a mainstream product in the HBM market. I’m pretty sure about that.”
By Michael Kanellos, Head of Influencer Relations, Marvell
The semiconductor market is vastly different than it was a few years ago. Cloud service providers want custom silicon and collaborating with partners on designs. Chiplets and 3D devices, long discussed in the future tense, are a growing sector of the market. Moore’s Law? It’s still alive, but manufacturers and designers are following it by different means than simply shrinking transistors.
And by sheer coincidence, many of the forces propelling these changes happened in the same year: 2006.
The Magic of Scaling Slows.
While Moore’s Law has slowed, it is still alive; semiconductor companies continue to be able to shrink the size of transistors at a somewhat predictable cadence.
The benefits, however, changed. With so-called “Dennard Scaling,” chip designers could increase clock speed, reduce power—or both—with transistor shrinks. In practical terms, it meant that PC makers, phone designers and software developers could plan on a steady stream of hardware advances.
Dennard Scaling effectively stopped in 20061. New technologies for keeping the hamster wheel spinning needed to be found, and fast.
By Todd Owens, Field Marketing Director, Marvell
Hewlett Packard Enterprise (HPE) recently updated its product naming protocol for the Ethernet adapters in its HPE ProLiant and HPE Apollo servers. Its new approach is to include the ASIC model vendor’s name in the HPE adapter’s product name. This commonsense approach eliminates the need for model number decoder rings on the part of Channel Partners and the HPE Field team and provides everyone with more visibility and clarity. This change also aligns more with the approach HPE has been taking with their “Open” adapters on HPE ProLiant Gen10 Plus servers. All of this is good news for everyone in the server sales ecosystem, including the end user. The products’ core SKU numbers remain the same, too, which is also good.
Copyright © 2024 Marvell, All rights reserved.